List of proper divisors | 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 21, 25, 27, 28, 30, 34, 35, 36, 42, 45, 50, 51, 54, 60, 63, 68, 70, 75, 81, 84, 85, 90, 100, 102, 105, 108, 119, 126, 135, 140, 150, 153, 162, 170, 175, 180, 189, 204, 210, 225, 238, 252, 255, 270, 300, 306, 315, 324, 340, 350, 357, 378, 405, 420, 425, 450, 459, 476, 510, 525, 540, 567, 595, 612, 630, 675, 700, 714, 756, 765, 810, 850, 900, 918, 945, 1020, 1050, 1071, 1134, 1190, 1260, 1275, 1350, 1377, 1428, 1530, 1575, 1620, 1700, 1785, 1836, 1890, 2025, 2100, 2142, 2268, 2295, 2380, 2550, 2700, 2754, 2835, 2975, 3060, 3150, 3213, 3570, 3780, 3825, 4050, 4284, 4590, 4725, 5100, 5355, 5508, 5670, 5950, 6300, 6426, 6885, 7140, 7650, 8100, 8925, 9180, 9450, 9639, 10710, 11340, 11475, 11900, 12852, 13770, 14175, 15300, 16065, 17850, 18900, 19278, 21420, 22950, 26775, 27540, 28350, 32130, 34425, 35700, 38556, 45900, 48195, 53550, 56700, 64260, 68850, 80325, 96390, 107100, 137700, 160650, 192780, 240975, 321300, 481950 |
List of all dividers | 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 21, 25, 27, 28, 30, 34, 35, 36, 42, 45, 50, 51, 54, 60, 63, 68, 70, 75, 81, 84, 85, 90, 100, 102, 105, 108, 119, 126, 135, 140, 150, 153, 162, 170, 175, 180, 189, 204, 210, 225, 238, 252, 255, 270, 300, 306, 315, 324, 340, 350, 357, 378, 405, 420, 425, 450, 459, 476, 510, 525, 540, 567, 595, 612, 630, 675, 700, 714, 756, 765, 810, 850, 900, 918, 945, 1020, 1050, 1071, 1134, 1190, 1260, 1275, 1350, 1377, 1428, 1530, 1575, 1620, 1700, 1785, 1836, 1890, 2025, 2100, 2142, 2268, 2295, 2380, 2550, 2700, 2754, 2835, 2975, 3060, 3150, 3213, 3570, 3780, 3825, 4050, 4284, 4590, 4725, 5100, 5355, 5508, 5670, 5950, 6300, 6426, 6885, 7140, 7650, 8100, 8925, 9180, 9450, 9639, 10710, 11340, 11475, 11900, 12852, 13770, 14175, 15300, 16065, 17850, 18900, 19278, 21420, 22950, 26775, 27540, 28350, 32130, 34425, 35700, 38556, 45900, 48195, 53550, 56700, 64260, 68850, 80325, 96390, 107100, 137700, 160650, 192780, 240975, 321300, 481950, 963900 |
Number of divisors d(n) | 180 |
Sum of all divisors σ(n) | 3781008 |
Aliquot sum | 2817108 |
963900 is an abundant number , because the sum of its proper divisors (2817108) is greater than itself. Its abundance is 1853208. |