List of proper divisors | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 24, 25, 26, 30, 36, 38, 39, 40, 45, 48, 50, 52, 57, 60, 65, 72, 75, 76, 78, 80, 90, 95, 100, 104, 114, 117, 120, 130, 144, 150, 152, 156, 171, 180, 190, 195, 200, 208, 225, 228, 234, 240, 247, 260, 285, 300, 304, 312, 325, 342, 360, 380, 390, 400, 450, 456, 468, 475, 494, 520, 570, 585, 600, 624, 650, 684, 720, 741, 760, 780, 855, 900, 912, 936, 950, 975, 988, 1040, 1140, 1170, 1200, 1235, 1300, 1368, 1425, 1482, 1520, 1560, 1710, 1800, 1872, 1900, 1950, 1976, 2223, 2280, 2340, 2470, 2600, 2736, 2850, 2925, 2964, 3120, 3420, 3600, 3705, 3800, 3900, 3952, 4275, 4446, 4560, 4680, 4940, 5200, 5700, 5850, 5928, 6175, 6840, 7410, 7600, 7800, 8550, 8892, 9360, 9880, 11115, 11400, 11700, 11856, 12350, 13680, 14820, 15600, 17100, 17784, 18525, 19760, 22230, 22800, 23400, 24700, 29640, 34200, 35568, 37050, 44460, 46800, 49400, 55575, 59280, 68400, 74100, 88920, 98800, 111150, 148200, 177840, 222300, 296400, 444600 |
List of all dividers | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 24, 25, 26, 30, 36, 38, 39, 40, 45, 48, 50, 52, 57, 60, 65, 72, 75, 76, 78, 80, 90, 95, 100, 104, 114, 117, 120, 130, 144, 150, 152, 156, 171, 180, 190, 195, 200, 208, 225, 228, 234, 240, 247, 260, 285, 300, 304, 312, 325, 342, 360, 380, 390, 400, 450, 456, 468, 475, 494, 520, 570, 585, 600, 624, 650, 684, 720, 741, 760, 780, 855, 900, 912, 936, 950, 975, 988, 1040, 1140, 1170, 1200, 1235, 1300, 1368, 1425, 1482, 1520, 1560, 1710, 1800, 1872, 1900, 1950, 1976, 2223, 2280, 2340, 2470, 2600, 2736, 2850, 2925, 2964, 3120, 3420, 3600, 3705, 3800, 3900, 3952, 4275, 4446, 4560, 4680, 4940, 5200, 5700, 5850, 5928, 6175, 6840, 7410, 7600, 7800, 8550, 8892, 9360, 9880, 11115, 11400, 11700, 11856, 12350, 13680, 14820, 15600, 17100, 17784, 18525, 19760, 22230, 22800, 23400, 24700, 29640, 34200, 35568, 37050, 44460, 46800, 49400, 55575, 59280, 68400, 74100, 88920, 98800, 111150, 148200, 177840, 222300, 296400, 444600, 889200 |
Number of divisors d(n) | 180 |
Sum of all divisors σ(n) | 3498040 |
Aliquot sum | 2608840 |
889200 is an abundant number , because the sum of its proper divisors (2608840) is greater than itself. Its abundance is 1719640. |