List of proper divisors | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 23, 24, 28, 30, 35, 36, 40, 42, 45, 46, 48, 49, 56, 60, 63, 69, 70, 72, 80, 84, 90, 92, 98, 105, 112, 115, 120, 126, 138, 140, 144, 147, 161, 168, 180, 184, 196, 207, 210, 230, 240, 245, 252, 276, 280, 294, 315, 322, 336, 345, 360, 368, 392, 414, 420, 441, 460, 483, 490, 504, 552, 560, 588, 630, 644, 690, 720, 735, 784, 805, 828, 840, 882, 920, 966, 980, 1008, 1035, 1104, 1127, 1176, 1260, 1288, 1380, 1449, 1470, 1610, 1656, 1680, 1764, 1840, 1932, 1960, 2070, 2205, 2254, 2352, 2415, 2520, 2576, 2760, 2898, 2940, 3220, 3312, 3381, 3528, 3864, 3920, 4140, 4410, 4508, 4830, 5040, 5520, 5635, 5796, 5880, 6440, 6762, 7056, 7245, 7728, 8280, 8820, 9016, 9660, 10143, 11270, 11592, 11760, 12880, 13524, 14490, 16560, 16905, 17640, 18032, 19320, 20286, 22540, 23184, 27048, 28980, 33810, 35280, 38640, 40572, 45080, 50715, 54096, 57960, 67620, 81144, 90160, 101430, 115920, 135240, 162288, 202860, 270480, 405720 |
List of all dividers | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 23, 24, 28, 30, 35, 36, 40, 42, 45, 46, 48, 49, 56, 60, 63, 69, 70, 72, 80, 84, 90, 92, 98, 105, 112, 115, 120, 126, 138, 140, 144, 147, 161, 168, 180, 184, 196, 207, 210, 230, 240, 245, 252, 276, 280, 294, 315, 322, 336, 345, 360, 368, 392, 414, 420, 441, 460, 483, 490, 504, 552, 560, 588, 630, 644, 690, 720, 735, 784, 805, 828, 840, 882, 920, 966, 980, 1008, 1035, 1104, 1127, 1176, 1260, 1288, 1380, 1449, 1470, 1610, 1656, 1680, 1764, 1840, 1932, 1960, 2070, 2205, 2254, 2352, 2415, 2520, 2576, 2760, 2898, 2940, 3220, 3312, 3381, 3528, 3864, 3920, 4140, 4410, 4508, 4830, 5040, 5520, 5635, 5796, 5880, 6440, 6762, 7056, 7245, 7728, 8280, 8820, 9016, 9660, 10143, 11270, 11592, 11760, 12880, 13524, 14490, 16560, 16905, 17640, 18032, 19320, 20286, 22540, 23184, 27048, 28980, 33810, 35280, 38640, 40572, 45080, 50715, 54096, 57960, 67620, 81144, 90160, 101430, 115920, 135240, 162288, 202860, 270480, 405720, 811440 |
Number of divisors d(n) | 180 |
Sum of all divisors σ(n) | 3307824 |
Aliquot sum | 2496384 |
811440 is an abundant number , because the sum of its proper divisors (2496384) is greater than itself. Its abundance is 1684944. |