List of proper divisors | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 28, 30, 32, 35, 36, 40, 42, 45, 48, 50, 56, 60, 63, 64, 70, 72, 75, 80, 84, 90, 96, 100, 105, 112, 120, 126, 128, 140, 144, 150, 160, 168, 175, 180, 192, 200, 210, 224, 225, 240, 252, 256, 280, 288, 300, 315, 320, 336, 350, 360, 384, 400, 420, 448, 450, 480, 504, 512, 525, 560, 576, 600, 630, 640, 672, 700, 720, 768, 800, 840, 896, 900, 960, 1008, 1050, 1120, 1152, 1200, 1260, 1280, 1344, 1400, 1440, 1536, 1575, 1600, 1680, 1792, 1800, 1920, 2016, 2100, 2240, 2304, 2400, 2520, 2560, 2688, 2800, 2880, 3150, 3200, 3360, 3584, 3600, 3840, 4032, 4200, 4480, 4608, 4800, 5040, 5376, 5600, 5760, 6300, 6400, 6720, 7200, 7680, 8064, 8400, 8960, 9600, 10080, 10752, 11200, 11520, 12600, 12800, 13440, 14400, 16128, 16800, 17920, 19200, 20160, 22400, 23040, 25200, 26880, 28800, 32256, 33600, 38400, 40320, 44800, 50400, 53760, 57600, 67200, 80640, 89600, 100800, 115200, 134400, 161280, 201600, 268800, 403200 |
List of all dividers | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 28, 30, 32, 35, 36, 40, 42, 45, 48, 50, 56, 60, 63, 64, 70, 72, 75, 80, 84, 90, 96, 100, 105, 112, 120, 126, 128, 140, 144, 150, 160, 168, 175, 180, 192, 200, 210, 224, 225, 240, 252, 256, 280, 288, 300, 315, 320, 336, 350, 360, 384, 400, 420, 448, 450, 480, 504, 512, 525, 560, 576, 600, 630, 640, 672, 700, 720, 768, 800, 840, 896, 900, 960, 1008, 1050, 1120, 1152, 1200, 1260, 1280, 1344, 1400, 1440, 1536, 1575, 1600, 1680, 1792, 1800, 1920, 2016, 2100, 2240, 2304, 2400, 2520, 2560, 2688, 2800, 2880, 3150, 3200, 3360, 3584, 3600, 3840, 4032, 4200, 4480, 4608, 4800, 5040, 5376, 5600, 5760, 6300, 6400, 6720, 7200, 7680, 8064, 8400, 8960, 9600, 10080, 10752, 11200, 11520, 12600, 12800, 13440, 14400, 16128, 16800, 17920, 19200, 20160, 22400, 23040, 25200, 26880, 28800, 32256, 33600, 38400, 40320, 44800, 50400, 53760, 57600, 67200, 80640, 89600, 100800, 115200, 134400, 161280, 201600, 268800, 403200, 806400 |
Number of divisors d(n) | 180 |
Sum of all divisors σ(n) | 3298152 |
Aliquot sum | 2491752 |
806400 is an abundant number , because the sum of its proper divisors (2491752) is greater than itself. Its abundance is 1685352. |