List of proper divisors | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 25, 27, 28, 30, 35, 36, 40, 42, 45, 49, 50, 54, 56, 60, 63, 70, 72, 75, 81, 84, 90, 98, 100, 105, 108, 120, 126, 135, 140, 147, 150, 162, 168, 175, 180, 189, 196, 200, 210, 216, 225, 245, 252, 270, 280, 294, 300, 315, 324, 350, 360, 378, 392, 405, 420, 441, 450, 490, 504, 525, 540, 567, 588, 600, 630, 648, 675, 700, 735, 756, 810, 840, 882, 900, 945, 980, 1050, 1080, 1134, 1176, 1225, 1260, 1323, 1350, 1400, 1470, 1512, 1575, 1620, 1764, 1800, 1890, 1960, 2025, 2100, 2205, 2268, 2450, 2520, 2646, 2700, 2835, 2940, 3150, 3240, 3528, 3675, 3780, 3969, 4050, 4200, 4410, 4536, 4725, 4900, 5292, 5400, 5670, 5880, 6300, 6615, 7350, 7560, 7938, 8100, 8820, 9450, 9800, 10584, 11025, 11340, 12600, 13230, 14175, 14700, 15876, 16200, 17640, 18900, 19845, 22050, 22680, 26460, 28350, 29400, 31752, 33075, 37800, 39690, 44100, 52920, 56700, 66150, 79380, 88200, 99225, 113400, 132300, 158760, 198450, 264600, 396900 |
List of all dividers | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 25, 27, 28, 30, 35, 36, 40, 42, 45, 49, 50, 54, 56, 60, 63, 70, 72, 75, 81, 84, 90, 98, 100, 105, 108, 120, 126, 135, 140, 147, 150, 162, 168, 175, 180, 189, 196, 200, 210, 216, 225, 245, 252, 270, 280, 294, 300, 315, 324, 350, 360, 378, 392, 405, 420, 441, 450, 490, 504, 525, 540, 567, 588, 600, 630, 648, 675, 700, 735, 756, 810, 840, 882, 900, 945, 980, 1050, 1080, 1134, 1176, 1225, 1260, 1323, 1350, 1400, 1470, 1512, 1575, 1620, 1764, 1800, 1890, 1960, 2025, 2100, 2205, 2268, 2450, 2520, 2646, 2700, 2835, 2940, 3150, 3240, 3528, 3675, 3780, 3969, 4050, 4200, 4410, 4536, 4725, 4900, 5292, 5400, 5670, 5880, 6300, 6615, 7350, 7560, 7938, 8100, 8820, 9450, 9800, 10584, 11025, 11340, 12600, 13230, 14175, 14700, 15876, 16200, 17640, 18900, 19845, 22050, 22680, 26460, 28350, 29400, 31752, 33075, 37800, 39690, 44100, 52920, 56700, 66150, 79380, 88200, 99225, 113400, 132300, 158760, 198450, 264600, 396900, 793800 |
Number of divisors d(n) | 180 |
Sum of all divisors σ(n) | 3207105 |
Aliquot sum | 2413305 |
793800 is an abundant number , because the sum of its proper divisors (2413305) is greater than itself. Its abundance is 1619505. |