List of proper divisors | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 20, 21, 24, 25, 26, 28, 30, 35, 39, 40, 42, 48, 49, 50, 52, 56, 60, 65, 70, 75, 78, 80, 84, 91, 98, 100, 104, 105, 112, 120, 130, 140, 147, 150, 156, 168, 175, 182, 195, 196, 200, 208, 210, 240, 245, 260, 273, 280, 294, 300, 312, 325, 336, 350, 364, 390, 392, 400, 420, 455, 490, 520, 525, 546, 560, 588, 600, 624, 637, 650, 700, 728, 735, 780, 784, 840, 910, 975, 980, 1040, 1050, 1092, 1176, 1200, 1225, 1274, 1300, 1365, 1400, 1456, 1470, 1560, 1680, 1820, 1911, 1950, 1960, 2100, 2184, 2275, 2352, 2450, 2548, 2600, 2730, 2800, 2940, 3120, 3185, 3640, 3675, 3822, 3900, 3920, 4200, 4368, 4550, 4900, 5096, 5200, 5460, 5880, 6370, 6825, 7280, 7350, 7644, 7800, 8400, 9100, 9555, 9800, 10192, 10920, 11760, 12740, 13650, 14700, 15288, 15600, 15925, 18200, 19110, 19600, 21840, 25480, 27300, 29400, 30576, 31850, 36400, 38220, 47775, 50960, 54600, 58800, 63700, 76440, 95550, 109200, 127400, 152880, 191100, 254800, 382200 |
List of all dividers | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 20, 21, 24, 25, 26, 28, 30, 35, 39, 40, 42, 48, 49, 50, 52, 56, 60, 65, 70, 75, 78, 80, 84, 91, 98, 100, 104, 105, 112, 120, 130, 140, 147, 150, 156, 168, 175, 182, 195, 196, 200, 208, 210, 240, 245, 260, 273, 280, 294, 300, 312, 325, 336, 350, 364, 390, 392, 400, 420, 455, 490, 520, 525, 546, 560, 588, 600, 624, 637, 650, 700, 728, 735, 780, 784, 840, 910, 975, 980, 1040, 1050, 1092, 1176, 1200, 1225, 1274, 1300, 1365, 1400, 1456, 1470, 1560, 1680, 1820, 1911, 1950, 1960, 2100, 2184, 2275, 2352, 2450, 2548, 2600, 2730, 2800, 2940, 3120, 3185, 3640, 3675, 3822, 3900, 3920, 4200, 4368, 4550, 4900, 5096, 5200, 5460, 5880, 6370, 6825, 7280, 7350, 7644, 7800, 8400, 9100, 9555, 9800, 10192, 10920, 11760, 12740, 13650, 14700, 15288, 15600, 15925, 18200, 19110, 19600, 21840, 25480, 27300, 29400, 30576, 31850, 36400, 38220, 47775, 50960, 54600, 58800, 63700, 76440, 95550, 109200, 127400, 152880, 191100, 254800, 382200, 764400 |
Number of divisors d(n) | 180 |
Sum of all divisors σ(n) | 3067512 |
Aliquot sum | 2303112 |
764400 is an abundant number , because the sum of its proper divisors (2303112) is greater than itself. Its abundance is 1538712. |