List of proper divisors | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 20, 21, 24, 25, 28, 30, 34, 35, 40, 42, 48, 50, 51, 56, 60, 68, 70, 75, 80, 84, 85, 100, 102, 105, 112, 119, 120, 125, 136, 140, 150, 168, 170, 175, 200, 204, 210, 238, 240, 250, 255, 272, 280, 300, 336, 340, 350, 357, 375, 400, 408, 420, 425, 476, 500, 510, 525, 560, 595, 600, 680, 700, 714, 750, 816, 840, 850, 875, 952, 1000, 1020, 1050, 1190, 1200, 1275, 1360, 1400, 1428, 1500, 1680, 1700, 1750, 1785, 1904, 2000, 2040, 2100, 2125, 2380, 2550, 2625, 2800, 2856, 2975, 3000, 3400, 3500, 3570, 4080, 4200, 4250, 4760, 5100, 5250, 5712, 5950, 6000, 6375, 6800, 7000, 7140, 8400, 8500, 8925, 9520, 10200, 10500, 11900, 12750, 14000, 14280, 14875, 17000, 17850, 20400, 21000, 23800, 25500, 28560, 29750, 34000, 35700, 42000, 44625, 47600, 51000, 59500, 71400, 89250, 102000, 119000, 142800, 178500, 238000, 357000 |
List of all dividers | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 20, 21, 24, 25, 28, 30, 34, 35, 40, 42, 48, 50, 51, 56, 60, 68, 70, 75, 80, 84, 85, 100, 102, 105, 112, 119, 120, 125, 136, 140, 150, 168, 170, 175, 200, 204, 210, 238, 240, 250, 255, 272, 280, 300, 336, 340, 350, 357, 375, 400, 408, 420, 425, 476, 500, 510, 525, 560, 595, 600, 680, 700, 714, 750, 816, 840, 850, 875, 952, 1000, 1020, 1050, 1190, 1200, 1275, 1360, 1400, 1428, 1500, 1680, 1700, 1750, 1785, 1904, 2000, 2040, 2100, 2125, 2380, 2550, 2625, 2800, 2856, 2975, 3000, 3400, 3500, 3570, 4080, 4200, 4250, 4760, 5100, 5250, 5712, 5950, 6000, 6375, 6800, 7000, 7140, 8400, 8500, 8925, 9520, 10200, 10500, 11900, 12750, 14000, 14280, 14875, 17000, 17850, 20400, 21000, 23800, 25500, 28560, 29750, 34000, 35700, 42000, 44625, 47600, 51000, 59500, 71400, 89250, 102000, 119000, 142800, 178500, 238000, 357000, 714000 |
Number of divisors d(n) | 160 |
Sum of all divisors σ(n) | 2785536 |
Aliquot sum | 2071536 |
714000 is an abundant number , because the sum of its proper divisors (2071536) is greater than itself. Its abundance is 1357536. |